Downstream E-box-mediated regulation of the human telomerase reverse transcriptase (hTERT) gene transcription: evidence for an endogenous mechanism of transcriptional repression.
نویسندگان
چکیده
Regulation of the hTERT gene encoding the telomerase catalytic subunit plays an important role in human cell senescence, immortalization, and carcinogenesis. By examining the activity of various deleted or mutated hTERT promoter fragments, we show that an E-box element downstream of the transcription initiation site is critical to differential hTERT transcription between the telomerase/hTERT-positive renal cell carcinoma cell line (RCC23) and its telomerase/hTERT-negative counterpart containing a transferred, normal chromosome 3 (RCC23+3). This E-box element mediated repression of hTERT transcription in RCC23+3 but not in RCC23. A copy number-dependent enhancement of the repression suggested active repression, rather than loss of activation, in RCC23+3. Endogenous expression levels of c-Myc or Mad1, which could activate or repress hTERT transcription when overexpressed, did not account for the differential hTERT transcription. Gel mobility shift assays identified the upstream stimulatory factors (USFs) as a major E-box-binding protein complex in both RCC23 and RCC23+3 and, importantly, detected an RCC23+3-specific, E-box-binding factor that was distinct from the USF and Myc/Mad families. The E-box-mediated repression was also active in normal human fibroblasts and epithelial cells and inactive in some, but not all, telomerase/hTERT-positive cancer cells. These findings provide evidence for an endogenous, repressive mechanism that actively functions in telomerase/hTERT-negative normal cells and becomes defective during carcinogenic processes, e.g., by an inactivation of the telomerase repressor gene on chromosome 3.
منابع مشابه
Transcriptional regulation of the telomerase hTERT gene as a target for cellular and viral oncogenic mechanisms.
Malignant transformation from mortal, normal cells to immortal, cancer cells is generally associated with activation of telomerase and subsequent telomere maintenance. A major mechanism to regulate telomerase activity in human cells is transcriptional control of the telomerase catalytic subunit gene, human telomerase reverse transcriptase (hTERT). Several transcription factors, including oncoge...
متن کاملThe Wilms' tumor 1 tumor suppressor gene represses transcription of the human telomerase reverse transcriptase gene.
Regulation of the human telomerase reverse transcriptase (hTERT) gene is the primary determinant for telomerase enzyme activity, which is found in tumor cells but is largely absent from normal somatic cells. Recent studies have shown that Myc protein can transcriptionally activate the hTERT gene. However, little is known about the repression mechanism of the hTERT gene and telomerase enzyme. He...
متن کاملAdvances in Brief Adenoviral Expression of p53 Represses Telomerase Activity through Down-Regulation of Human Telomerase Reverse Transcriptase Transcription
Telomerase activation is a critical step in cellular immortality and oncogenesis. The activity of telomerase is known to be correlated with cell proliferation, but its regulation by cell cycle regulators is not well understood. In the present study, we examined the effects of p53 on telomerase activity. Wild-type p53 was introduced into SiHa cells via a recombinant adenoviral vector, Ad5CMV-p53...
متن کاملLysine-Specific Demethylase 1 (LSD1) Is Required for the Transcriptional Repression of the Telomerase Reverse Transcriptase (hTERT) Gene
BACKGROUND Lysine-specific demethylase 1 (LSD1), catalysing demethylation of mono- and di-methylated histone H3-K4 or K9, exhibits diverse transcriptional activities by mediating chromatin reconfiguration. The telomerase reverse transcriptase (hTERT) gene, encoding an essential component for telomerase activity that is involved in cellular immortalization and transformation, is silent in most n...
متن کاملTelomerase reverse transcriptase promoter regulation during myogenic differentiation of human RD rhabdomyosarcoma cells.
During terminal differentiation of human and murine cells, telomerase activity and parallel transcription of telomerase reverse transcriptase (hTERT) are inhibited. In this study, we used in vitro and in vivo analyses to determine the role of hTERT promoter elements and associated factors during differentiation-induced inhibition of telomerase expression in RD, a human rhabdomyosarcoma cell lin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular biology of the cell
دوره 13 8 شماره
صفحات -
تاریخ انتشار 2002